# Pybalmorel for Map Plotting This notebook provide examples on how to use the pybalmorel post processing map plotting tool. ```python ### Loading scenarios res = MainResults(files=['MainResults_Example1.gdx', 'MainResults_Example2.gdx', 'MainResults_Example3.gdx'], paths='files', scenario_names=['SC1', 'SC2', 'SC3']) ``` ## Basic map plotting The map plotting tool only needs 2 arguments to work. One has to select the **scenario** (see scenarios importation in [this section](postprocessing.md)), and the **year**. \ With those two arguments, the map of Europe is plotted with the countries inside the model in beige and the countries outside of the model in grey. \ To plot the transmission lines and the generation information, one has to set the parameters **lines**, **generation**, and **commodity** (*Electricity* or *Hydrogen*). \ Please note that lines and generation can also be plotted alone but that **commodity is always necessary if one of them is used.** ```python fig, ax = res.plot_map(scenario='SC3', year=2050) ``` ![png](../img/PostProcessing_map_files/MapPlotting_4_2.png) ```python fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Electricity', lines='Capacity', generation='Capacity') ``` ![png](../img/PostProcessing_map_files/MapPlotting_5_2.png) ```python fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Hydrogen', lines='Capacity') ``` ![png](../img/PostProcessing_map_files/MapPlotting_6_2.png) ## Selecting different transmission and generation information The option **lines** allows to plot different transmission line information amongst *Capacity*, *FlowYear*, *FlowTime*, *UtilizationYear*, *UtilizationTime*. \ The option **generation** allows to plot different generation information amongst *Capacity*, *Production*, *ProductionTime*. \ Please note that for *FlowTime*, *UtilizationTime* and *ProductionTime*, it is possible to select a specific **S** and **T**. \ If one wants the lines commodity and the generation commodity to be different, they can use the **generation_commodity** option. ```python fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Electricity', lines='FlowYear', generation='Production') ``` ![png](../img/PostProcessing_map_files/MapPlotting_8_2.png) ```python fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Electricity', lines='FlowTime', generation='ProductionTime', S='S08', T='T076') ``` ![png](../img/PostProcessing_map_files/MapPlotting_9_2.png) ```python fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Hydrogen', generation_commodity='Electricity', lines='UtilizationYear', generation='Production') ``` ![png](../img/PostProcessing_map_files/MapPlotting_10_2.png) ## Background information Using the option **background**, it is possible to plot an additional information that colors the countries. For now *H2 Storage*, *Elec Storage*, *Elec Net Export*, *H2 Net Export* and *Elec Price* have been implemented. \ It is possible to personalize the background scale with the option **background_scale** and **background_scale_tick** as in the examples below (both can be used at the same time). ```python fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Electricity', lines='Capacity', generation='Capacity', background="Elec Storage") ``` ![png](../img/PostProcessing_map_files/MapPlotting_12_3.png) ```python fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Hydrogen', lines='Capacity', generation='Capacity', background="H2 Storage", background_scale = [0,25]) ``` ![png](../img/PostProcessing_map_files/MapPlotting_13_3.png) ```python fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Electricity', lines='FlowYear', generation='Production', background="Elec Net Export", background_scale_tick = 20) ``` ![png](../img/PostProcessing_map_files/MapPlotting_14_3.png) ## Size of the elements and legend The size of the lines and pie charts is function of the options **line_width_cat** and **pie_radius_cat** and can be selected amongst *log*, *linear*, and *cluster*. (log is the default one) \ While *log* and *linear* are computing the sizes based on maximum and minimum values (those values can be changed), *cluster* needs the input of cluster values and cluster widths/radius to work (see example below). \ The size of the lines and the pie charts in the legend is automatic but one can choose to personalized them with **line_legend_cluster_values** and **pie_legend_cluster_values**. \ Please note that if *cluster* is choosed as category, then the legend will used those categories. The width of the lines is in point and the radius of the pie chart in data unit. \ It is also possible to change the legend of the pie charts and to select either *TECH_TYPE* or *FFF* to be plotted with the option **generation_var**. ```python fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Electricity', lines='Capacity', generation='Capacity', generation_var='TECH_TYPE', line_width_cat = 'linear', pie_radius_cat = 'linear') ``` ![png](../img/PostProcessing_map_files/MapPlotting_16_2.png) ```python fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Electricity', lines='Capacity', generation='Capacity', generation_var='FFF', line_legend_cluster_values=[10, 20, 50, 75], pie_legend_cluster_values=[10, 100, 300, 500]) ``` ![png](../img/PostProcessing_map_files/MapPlotting_17_2.png) ```python fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Electricity', lines='Capacity', generation='Capacity', line_width_cat = 'cluster', line_cluster_values = [5, 10, 40, 80], line_cluster_widths = [0.5, 2, 5, 12], pie_radius_cat = 'cluster', pie_cluster_values = [50, 100, 300, 500], pie_cluster_radius = [0.2, 0.5, 1, 1.5]) ``` ![png](../img/PostProcessing_map_files/MapPlotting_18_2.png) ## Geofile input and coordinates issues Using the option **path_to_geofile**, it is possible to use a personalized map file with a specific column (option *geo_file_region_column*) with the name of the regions in your Balmorel file. \ When using this option, the coordinates are set automatically as the border of the map plus an offset that can be modified with the option **coordinates_geofile_offset**. \ It is also possible to choose to plot only Denmark by setting *choosen_map_coordinates* as "DK" (if you only have data for denmark, please use it) or to select specific coordinates with *map_coordinates*. \ Please note that when modifying all of this, you will have trouble with the size of the lines and pie charts that are defined in data values. You will need to modify those to have something that you like. \ **For now, the legend is only working for the EU coordinates (in the case of having data for all EU) !!** ```python fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Electricity', path_to_geofile="../../../examples/files/Geofile_Example.geojson") ``` ![png](../img/PostProcessing_map_files/MapPlotting_20_2.png) ```python fig, ax = res.plot_map(scenario='SC1', year=2050, commodity='Electricity', lines='Capacity', generation='Capacity') ``` ![png](../img/PostProcessing_map_files/MapPlotting_21_2.png) ```python fig, ax = res.plot_map(scenario='SC1', year=2050, commodity='Electricity', lines='Capacity', generation='Capacity', choosen_map_coordinates="DK") ``` ![png](../img/PostProcessing_map_files/MapPlotting_22_2.png) ## Additional options There is a large number of additional options available and the detailed can be found in the function's help below : ```python help(res.plot_map) ``` Let's review some examnples : ```python # If you want to show the value of the lines and not the arrows fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Electricity', lines='UtilizationYear', generation='Capacity', line_label_show=True, line_flow_show=False) ``` ![png](../img/PostProcessing_map_files/MapPlotting_25_2.png) ```python # If you want to not plot the smaller lines and pies you can define a minimum value fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Electricity', lines='FlowYear', generation='Capacity', line_show_min=10, pie_show_min=50) ``` ![png](../img/PostProcessing_map_files/MapPlotting_26_2.png) ```python # If you want to specified the colors of different things on the graph fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Electricity', lines='FlowYear', generation='Capacity', background_color='blue', regions_model_color='green', regions_ext_color='red', line_color='black') ``` ![png](../img/PostProcessing_map_files/MapPlotting_27_2.png) ```python # If you want to specify the colors used for the different countries, using a csv file (this coloring has the priority on everything) fig, ax = res.plot_map(scenario='SC3', year=2050, commodity='Electricity', lines='FlowYear', generation='Production', countries_colors_path = "../../../examples/files/countries_colors_example.csv") ``` ![png](../img/PostProcessing_map_files/MapPlotting_28_2.png)